##########################################################################################################
#### Spectre - rPCA Batch Integration Workflow
##########################################################################################################
# Spectre R package: https://immunedynamics.io/spectre
# Thomas Myles Ashhurst, Felix Marsh-Wakefield, Givanna Putri
##########################################################################################################
#### Create a folder structure for your analysis run
##########################################################################################################
### Create a master folder with a meaningful name. Then inside that folder, insert the following:
# One folder called 'data' -- this will contain your data CSV or FCS files
# One folder called 'metadata' -- this will contain a CSV containg your sample metadata
# One folder called 'Spectre rPCA' or similar -- place this analysis script there
### Example:
# BM analysis
# /data
# -- Contains data files, one CSV or FCS per sample
# /metadata
# -- Contains a CSV containing sample metadata (group, batch, etc)
# /Spectre rPCA
# -- Spectre rPCA.R
##########################################################################################################
#### 1. Load packages, and set working directory
##########################################################################################################
### Load libraries
library(Spectre)
Spectre::package.check() # Check that all required packages are installed
Spectre::package.load() # Load required packages
### Install Seurat package
if(!require('Seurat')) {install.packages('Seurat')}
library('Seurat')
### Set PrimaryDirectory
dirname(rstudioapi::getActiveDocumentContext()$path) # Finds the directory where this script is located
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # Sets the working directory to where the script is located
getwd()
PrimaryDirectory <- getwd()
PrimaryDirectory
### Set 'input' directory
setwd(PrimaryDirectory)
dir.create('../data', showWarnings = FALSE)
setwd("../data/")
InputDirectory <- getwd()
setwd(PrimaryDirectory)
### Set 'metadata' directory
setwd(PrimaryDirectory)
dir.create('../metadata', showWarnings = FALSE)
setwd("../metadata/")
MetaDirectory <- getwd()
setwd(PrimaryDirectory)
### Create output directory
dir.create("Output_Spectre", showWarnings = FALSE)
setwd("Output_Spectre")
OutputDirectory <- getwd()
setwd(PrimaryDirectory)
##########################################################################################################
#### Demo dataset
##########################################################################################################
### If you need the demo dataset, uncomment the following code (select all, CMD+SHIFT+C) and run to download
### Alternative: download from https://github.com/ImmuneDynamics/data/blob/main/simBatches.zip?raw=TRUE
# setwd(PrimaryDirectory)
# setwd("../")
# getwd()
# download.file(url = "https://github.com/ImmuneDynamics/data/blob/main/simBatches.zip?raw=TRUE", destfile = 'simBatches.zip', mode = 'wb')
# unzip(zipfile = 'simBatches.zip')
# for(i in list.files('simBatches/data', full.names = TRUE)){
# file.rename(from = i, to = gsub('simBatches/', '', i))
# }
# for(i in list.files('simBatches/metadata', full.names = TRUE)){
# file.rename(from = i, to = gsub('simBatches/', '', i))
# }
# unlink(c('simBatches/', 'simBatches.zip', '__MACOSX'), recursive = TRUE)
##########################################################################################################
#### 2. Import and prep data
##########################################################################################################
### Import data
setwd(InputDirectory)
list.files(InputDirectory, ".csv")
data.list <- Spectre::read.files(file.loc = InputDirectory,
file.type = ".csv",
do.embed.file.names = TRUE)
### Check the data
check <- do.list.summary(data.list)
check$name.table # Review column names and their subsequent values
check$ncol.check # Review number of columns (features, markers) in each sample
check$nrow.check # Review number of rows (cells) in each sample
data.list[[1]]
### Merge data
cell.dat <- Spectre::do.merge.files(dat = data.list)
cell.dat
### Read in metadata
setwd(MetaDirectory)
meta.dat <- fread("sample.details.csv")
meta.dat
##########################################################################################################
#### 3. Data transformation
##########################################################################################################
setwd(OutputDirectory)
dir.create("Output 1 - transformed plots")
setwd("Output 1 - transformed plots")
### Arcsinh transformation
as.matrix(names(cell.dat))
to.asinh <- names(cell.dat)[c(1:8)]
to.asinh
cofactor <- 500
plot.against <- "BV605 Ly6C_asinh"
cell.dat <- do.asinh(cell.dat, to.asinh, cofactor = cofactor)
transformed.cols <- paste0(to.asinh, "_asinh")
for(i in transformed.cols){
fast.colour.plot(do.subsample(cell.dat, 100000), i, plot.against)
}
##########################################################################################################
#### 4. Add metadata and set some preferences
##########################################################################################################
### Add metadata to data.table
meta.dat
sample.info <- meta.dat[,c(1:4)]
sample.info
meta.dat
cell.dat <- do.add.cols(cell.dat, "FileName", sample.info, "FileName", rmv.ext = TRUE)
cell.dat
### Cellular columns
as.matrix(names(cell.dat))
cellular.cols <- names(cell.dat)[c(11:18)]
as.matrix(cellular.cols)
### Clustering columns
as.matrix(names(cell.dat))
cluster.cols <- names(cell.dat)[c(11:18)]
as.matrix(cluster.cols)
### Clusters to align
as.matrix(names(cell.dat))
raw.cols <- names(cell.dat)[c(11:18)]
as.matrix(raw.cols)
### Factors
exp.name <- "BM experiment"
as.matrix(names(cell.dat))
sample.col <- "Sample"
group.col <- "Group"
batch.col <- "Batch"
### Subsample targets per group
data.frame(table(cell.dat[[group.col]])) # Check number of cells per sample.
unique(cell.dat[[group.col]])
sub.targets.group <- c(20000, 20000) # target subsample numbers from each group
sub.targets.group
### Subsample targets per batch
data.frame(table(cell.dat[[batch.col]])) # Check number of cells per sample.
unique(cell.dat[[batch.col]])
sub.targets.batch <- c(20000, 20000) # target subsample numbers from each group
sub.targets.batch
### Choose a batch as reference
as.matrix(unique(cell.dat[[batch.col]]))
ref <- 'A'
ref
##########################################################################################################
#### 5. Testing batch integration
##########################################################################################################
setwd(OutputDirectory)
dir.create("Output 2 - Test batch integration")
setwd("Output 2 - Test batch integration")
### Pre-alignment assessment
setwd(OutputDirectory)
setwd("Output 2 - Test batch integration")
dir.create("2.1 - Pre-alignment")
setwd("2.1 - Pre-alignment")
as.matrix(unique(cell.dat[[batch.col]]))
test <- do.subsample(cell.dat, sub.targets.batch, divide.by = batch.col)
test
test <- run.umap(test, raw.cols)
test
fast.colour.plot(test, 'UMAP_X', 'UMAP_Y', batch.col)
fast.multi.plot(test, 'UMAP_X', 'UMAP_Y', cellular.cols)
fast.multi.plot(test, 'UMAP_X', 'UMAP_Y', batch.col, batch.col)
### Alignment test
setwd(OutputDirectory)
setwd("Output 2 - Test batch integration")
dir.create("2.2 - Test alignment")
setwd("2.2 - Test alignment")
test <- run.rpca(dat = test, use.cols = raw.cols, batch.col = batch.col, reference = ref)
test
aligned.cols <- paste0(raw.cols, '_rPCA_aligned')
aligned.cols
test[,..aligned.cols]
test <- run.umap(test, aligned.cols, umap.x.name = 'UMAP_X_Integrated', umap.y.name = 'UMAP_Y_Integrated')
test
fast.colour.plot(test, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', batch.col)
fast.multi.plot(test, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', raw.cols, figure.title = 'Raw cols')
fast.multi.plot(test, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', aligned.cols, figure.title = 'Aligned cols')
fast.multi.plot(test, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', batch.col, batch.col)
### Comparison plots
for(i in raw.cols){
fast.colour.plot(test, paste0(i, '_rPCA_aligned'), i, batch.col)
}
### Clean up
rm(aligned.cols)
##########################################################################################################
#### 6. Full batch integration
##########################################################################################################
setwd(OutputDirectory)
dir.create("Output 3 - Full batch integration")
setwd("Output 3 - Full batch integration")
### Batch integration
cell.dat <- run.rpca(dat = cell.dat, use.cols = raw.cols, batch.col = batch.col, reference = ref)
cell.dat
aligned.cols <- paste0(raw.cols, '_rPCA_aligned')
aligned.cols
cell.dat[,..aligned.cols]
batch.sub <- do.subsample(cell.dat, sub.targets.batch, divide.by = batch.col)
batch.sub
batch.sub <- run.umap(batch.sub, aligned.cols, umap.x.name = 'UMAP_X_Integrated', umap.y.name = 'UMAP_Y_Integrated')
batch.sub
### Plots
fast.colour.plot(batch.sub, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', batch.col)
fast.multi.plot(batch.sub, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', raw.cols, figure.title = 'Raw cols')
fast.multi.plot(batch.sub, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', aligned.cols, figure.title = 'Aligned cols')
fast.multi.plot(batch.sub, 'UMAP_X_Integrated', 'UMAP_Y_Integrated', batch.col, batch.col)
### Comparison plots
for(i in raw.cols){
fast.colour.plot(batch.sub, paste0(i, '_rPCA_aligned'), i, batch.col)
}
##########################################################################################################
#### 7. Clustering and dimensionality reduction
##########################################################################################################
setwd(OutputDirectory)
dir.create("Output 4 - clustering")
setwd("Output 4 - clustering")
### Update clustering columns
cellular.cols <- paste0(cellular.cols, '_rPCA_aligned')
cellular.cols
cluster.cols <- paste0(cluster.cols, '_rPCA_aligned')
cluster.cols
### Clustering
cell.dat <- run.flowsom(cell.dat, cluster.cols, meta.k = 15)
cell.dat
### Dimensionality reduction
cell.sub <- do.subsample(cell.dat, sub.targets.group, group.col)
cell.sub
cell.sub <- run.umap(cell.sub, cluster.cols)
cell.sub
### DR plots
fast.colour.plot(cell.sub, "UMAP_X", "UMAP_Y", "FlowSOM_metacluster", col.type = 'factor', add.label = TRUE)
fast.multi.plot(cell.sub, "UMAP_X", "UMAP_Y", cellular.cols)
fast.multi.plot(cell.sub, "UMAP_X", "UMAP_Y", "FlowSOM_metacluster", group.col, col.type = 'factor')
### Expression heatmap
exp <- do.aggregate(cell.dat, cellular.cols, by = "FlowSOM_metacluster")
make.pheatmap(exp, "FlowSOM_metacluster", cellular.cols)
##########################################################################################################
#### 8. Annotate clusters
##########################################################################################################
setwd(OutputDirectory)
dir.create("Output 5 - annotation")
setwd("Output 5 - annotation")
### Annotate
annots <- list("T cells" = c(4,1),
"Ly6Chi monocyte" = c(12,13,14),
"Immature neutrophils" = c(10),
"Mature neutriphils" = c(11,15),
"B cells" = c(2,3),
"Other" = c(5,6,7,9,8)
)
annots <- do.list.switch(annots)
names(annots) <- c("Values", "Population")
setorderv(annots, 'Values')
annots
### Add annotations
cell.dat <- do.add.cols(cell.dat, "FlowSOM_metacluster", annots, "Values")
cell.dat
cell.sub <- do.add.cols(cell.sub, "FlowSOM_metacluster", annots, "Values")
cell.sub
fast.colour.plot(cell.sub, "UMAP_X", "UMAP_Y", "Population", col.type = 'factor', add.label = TRUE)
fast.multi.plot(cell.sub, "UMAP_X", "UMAP_Y", "Population", group.col, col.type = 'factor')
### Expression heatmap
rm(exp)
exp <- do.aggregate(cell.dat, cellular.cols, by = "Population")
make.pheatmap(exp, "Population", cellular.cols)
### Write FCS files
fwrite(cell.dat, "Annotated.data.csv")
fwrite(cell.sub, "Annotated.data.DR.csv")
dir.create('FCS files')
setwd('FCS files')
write.files(cell.dat,
file.prefix = exp.name,
divide.by = sample.col,
write.csv = FALSE,
write.fcs = TRUE)
##########################################################################################################
#### Output session info
##########################################################################################################
### Session info and metadata
setwd(OutputDirectory)
dir.create("Output - info", showWarnings = FALSE)
setwd("Output - info")
sink(file = "session_info.txt", append=TRUE, split=FALSE, type = c("output", "message"))
sessionInfo()
sink()
write(raw.cols, "raw.cols.txt")
write(aligned.cols, "aligned.cols.txt")
write(cellular.cols, "cellular.cols.txt")
write(cluster.cols, "cluster.cols.txt")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.